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Abstract 
Artificial neural networks can perform reliable classification of ground 
vehicles based solely on their acoustic signatures, if robust features can be 
identified. We present feature extraction and classification results using 
simple power spectrum estimates, harmonic line association, and principal 
component analysis. Algorithm implementation and performance analysis 
of each feature extraction method are discussed. Also given are preliminary 
evaluation results of a VLSI (very-large-scale integration) device dedicated 
to neural network implementation. 



Contents 

1. Introduction 1 
1.1 Feature Extraction 1 
1.2 Feature Extraction Techniques 1 
1.3 Artificial Neural Networks 2 

2. Procedure 4 
2.1 Data Collection 4 
2.2 Feature Extraction Methods 5 
2.3 Backpropagation Neural Network 6 

3. Results 8 
3.1 Confusion Matrices 8 
3.2 Results using CNAPS 9 

4. Conclusions 10 

5. Future Considerations 11 

References 13 

Distribution 15 

Report Documentation Page 20 

Figures 

1. General neuron structure 3 
2. Neural network architecture 3 
3. Field sensor and processing architecture 5 

Tables 

1. Classes of vehicles 5 
2. Testing results for trained BPNN 8 

in 



1. Introduction 
It should be possible to use artificial neural networks (ANNs) to classify 
tracked and wheeled vehicles solely based on their acoustic signatures. 
The main problem faced in classification is the selection of proper feature 
vectors that will be stable and class specific. Acoustic signatures are typi- 
cally nonstationary [1,2] and are often corrupted by propagation effects, 
noise, and interference from the environment [1,3,4]. A robust feature 
extraction technique must be, to some degree, tolerant of these issues in 
order to be reliable. We have investigated three feature extraction tech- 
niques: simple power spectrum estimates (PSEs), harmonic line association 
(HLA) techniques [4], and principal component analysis (PCA) [5-7]. 
Algorithm implementation and performance analysis for these techniques 
are discussed and compared. Also given are preliminary evaluation results 
of a VLSI (very-large-scale integration) chip dedicated to neural networks. 

1.1 Feature Extraction 

Fundamentally, feature extraction and selection involve choosing those 
features of a class of patterns (whether waveforms, images, or geometric 
shapes) that will maintain class separability under the constraint of some 
criterion function. Feature extraction is a mapping of the original n-dimen- 
sional measurements into an m-dimensional feature space (n > m). In 
theory, the Bayes error [5,7,8] is the optimum measure of a feature's effec- 
tiveness, but it is difficult to obtain. One would need to perform nonpara- 
metric density estimation [5,7,8], a very time-consuming task, to obtain the 
posterior probabilities and in turn the Bayes error. Often in practice, fea- 
ture extraction for representation is different from that for classification: 
features used for representation can be suboptimal for classification since 
they are not based on class separability [5]. The criterion used frequently 
for systematic feature extraction (Fukunaga's separability criterion) is 
based on a family of scatter matrices that can measure the class separabil- 
ity and generate optimal transformation matrices. This criterion can be 
applied by ANNs with the correct training algorithm [6,9-12]. The main 
problem is in its implementation under current system constraints; there- 
fore, we use simpler analytical tools to evaluate the feature space. 

1.2 Feature Extraction Techniques 

The spectral characteristics of vehicle noise are distinctive: their acoustic 
signatures are dominated by narrow-band spectral peaks, since the physi- 
cal process producing these sounds (engine firing rate and track slap) is 
periodic [3]. Spectral methods are amenable to calculation because of their 
simplicity and the existence of fast algorithms. These spectral lines, the 
first feature space considered, should present a good feature vector for 
classification and have in fact been used in the past for classification based 
on simple clustering techniques [4], for hierarchical clustering, and as 
inputs to an ANN [13]. The spectral peaks are typically bandlimited be- 
tween 0 and 400 Hz, but peak components occur between 10 and 120 Hz. 



A second feature space based on HLA [4] allows one to reduce the feature 
space considerably and should not appreciably reduce the separability of 
the various classes of vehicles [5]. 

A third feature space that holds promise is the principal components. PCA 
is a well-established technique in feature selection for both representation 
and classification [5,6,9]. PCA has a high degree of energy compaction: it 
basically transforms the original space into an uncorrelated space, thus 
reducing the dimension of the feature space. PCA is the brother of the 
Karhunen-Loeve transform, which is known to be the optimal transform 
method for signal representation [14,15]. Principal components are derived 
by the following set of relationships. Let 

u(n) = [u(t), u(t +1),..., u(t + N- 1)]T (1) 

be an N x 1 random input vector and assume zero mean without loss of 
generality. Let R be the N x N correlation matrix of the data with eigenval- 
ues Aj, Aj, ..., AN. The k principal components are defined by the linear 
transformation 

C(n) = Oru(n), (2) 

where C(n) = [cy c2,..., ck]T is a k x 1 principal component matrix, and O is 
an N x k matrix, with columns corresponding to k eigenvectors for the k 
largest eigenvalues of R. We choose the value k arbitrarily, where k is sig- 
nificantly less than N, thus reducing the dimensionality of the original 
input space. The correlation matrix of the newly formed principal compo- 
nents is a diagonal matrix; thus the principal components are uncorrelated 
[6,19]. The principal components are optimal in a mean square sense and 
have removed redundancy associated with the original measurement. A 
motivation for using principal components is that data that exhibit a high 
degree of correlation from sample to sample may allow fast algorithms to 
implement PCA. Also, several researchers in neural networks [6,9- 
11,15,16] have derived learning algorithms to implement PCA. Finally, 
work in perfect reconstruction filter banks [17] leads one to believe that it 
may be possible to employ PCA in "real time." 

1.3      Artificial Neural Networks 

ANNs are currently in use by ARL for classification of ground and air tar- 
gets. In target classification, the ANN can not only aid in providing infor- 
mation about the target class, but also give a measure of one's confidence 
in the decision. ANNs derive their computational power from their paral- 
lel distributed structure and ability to learn. Because neurons are basically 
nonlinear devices, the ANN will be nonlinear; nonlinearity is a very 
important property in light of the input signal structure, which is 
nonstationary and perhaps nonlinear. 

The backpropagation ANN derives its name from the error-correction rule 
used in its training. Basically, the error backpropagation consists of two 
passes through the network. The forward pass takes the input vector and 
computes an activity pattern that propagates through the network, layer 



Figure 1. General 
neuron structure. 

by layer. During the forward pass, all the synaptic weights remain fixed. In 
the backward pass, the synaptic weights are adjusted by an error correc- 
tion rule that is fundamentally the same for both hidden neurons and out- 
put neurons and is based on stochastic gradient descent [9,19]. Each neu- 
ron has the general structure shown in figure 1. The overall architecture for 
the network is shown in figure 2. 

From figure 1, the governing expression for the output of a single neuron is 
the summation of weighted inputs: 

vfyi) = Z WH (n) x <n) 

where 

y. (n) = <Pj(Vj(n)) 

(3) 

(4) 

is the output of the ;th neuron. 
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Here (pin) is the sigmoidal activation function given by 

VTTF^r (5) 

an important approximation to hardlimiting. The sigmoidal activation 
function is differentiable, which facilitates the weight update given by the 
delta rule general expression 

AWjt<n) = rjSfn) yfn) ; (6) 

here r\ is the learning rate parameter, 8-{n) is the local gradient (which de- 
pends on whether neuron ; is in the output layer or the hidden layer), and 
t/;(n) is the input to the/'th neuron. The local gradient points to the required 
changes in the synaptic weights; in the output layer, the local gradient has 
the form 

Sj(n) = ej(n)<pj(vj(n)) , (7) 

with the error signal e(n) given by 

ej{n) = dfn)-yfn) (8) 

and din) is the desired signal. 

The picture is more complex for the weight updates in the hidden layers; 
here the local gradient is dependent on all the errors associated with the 
neurons in the output layer when only one layer is hidden. 

The local gradient for a hidden layer is given by 

Sfn) = Q'jiVjin)) E 5k(n) Wkj(n) (9) 

with Sj^n) derived from the error signals associated with the k output neu- 
rons connected to the ;'th hidden neuron. These equations represent the 
general backpropagation algorithm and do not include the refinements 
available for a more robust network. 

2. Procedure 

2.1      Data Collection 

RNADS (Remote Netted Acoustic Detection System) [1], a remote sensor 
architecture, was used to gather acoustic data from ground vehicles at 
Grayling, Michigan, and Aberdeen Proving Ground, Maryland. The ve- 
hicles included three tracked (class 0,1, and 3) and one wheeled vehicle 
(class 2), all powered by 12-cylinder diesel engines (see table 1). The re- 
mote sensor consists of an 8-ft-diameter circular array of Knowles BL1994 
ceramic microphones, with six microphones placed along the perimeter 
and a seventh microphone at the center of the array. This array baseline 
provides good directivity at low frequencies. Figure 3 shows the RNADS 
sensor and processing architecture. 



Table 1. Classes of 
vehicles. Class Vehicle 

0 12-cylinder diesel, tracked vehicle 

1 12-cylinder diesel, tracked vehicle 

2 12-cylinder diesel engine, heavy 
wheeled vehicle 

3 12-cylinder diesel, tracked vehicle 

The acoustic signals were preamplified with a selectable gain of 40 and 
60 dB and passed to a ruggedized personal computer (PC) and a digital 
audio tape (DAT) recorder. The DAT recorder sampled the acoustic signa- 
tures at a 2-kHz rate, well above the Nyquist rate. Within the PC, acoustic 
signals are anti-aliased with a lowpass filter, fed to 16-bit analog-to-digital 
converters, and further processed with a pair of commercially available 
digital signal processing boards for real-time applications. 

2.2      Feature Extraction Methods 

We generated PSEs for each 1-s interval of data using Hanning windowed 
short-time Fourier transforms according to the Welch method [18]. We 
used the first 200 frequency bins derived from the power spectrum in the 
1 to 200 Hz range for classification in the ANN. 

A second technique used was selecting only those peaks that were 
"harmonically related." An HLA was developed by Robertson and Weber 
[4] to create harmonic line sets for each second of data samples. This algo- 
rithm takes the strongest peak P in the frequency peak set subject to the 
constraint/^nd e [8,20] Hz, assumes that this peak is some kth harmonic 
line of the fundamental frequency, and then calculates the total signal 
strength in that HLA set. The integer value k that gives the maximum 
signal strength is assumed to be the correct harmonic line number, and a 
total of 11 harmonic lines are retained as the feature vector. This technique 
has the advantage of normalizing the feature vector, since the feature is 
based on harmonic line number and not a function of frequency. 

To calculate the principal components, we downsampled the data to 
512 Hz and then divided them into 512/N subblocks of N samples (N = 64 
or 128) for each data snapshot. The data were then used to generate a set of 
instantaneous autocorrelation matrix estimates (see eq (10) to (12)) [19]. Al- 
though subblock sizes of 64 and 128 samples were used in generating the 
correlation matrix estimates, we report only the results with 64-sample 
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subblock sizes. The 128-sample subblocks gave similar classification re- 
sults in preliminary training and testing of the neural network. The corre- 
lation matrix estimates were used for eigenanalysis; 11 eigenvectors associ- 
ated with the largest 11 eigenvalues were used to transform the original 
data vector (64 samples) from each subblock to produce the principal com- 
ponents for that subblock. The principal components generated for each 
subblock were then averaged to produce an averaged principal component 
feature vector over the 512-sample block (see eq (13)). The entire procedure 
was repeated, shifting 256 samples (50-percent overlap) and forming a 
new 512-sample block for processing. We wanted to compare the perfor- 
mance of the PC A and HLA feature space in the classification scheme, so 
only 11 PCA features were retained; it was also necessary to generate one 
PCA feature vector per second of data sampled. The estimation process for 
a correlation matrix is based on the following data matrix formulation: 

AH = [u(M), u(M + 1),..., u(N)] , (10) 

with the matrix u(z) given by 

u(z) = [H(0, u(i -1),..., u(i - M + 1)]T , (11) 

with the indices i falling in the range [M, N]. 

Therefore, the data matrix AH is an M by N - M + 1 rectangular Toeplitz 
matrix. 

Then the estimation of matrix R is performed by 

R-2m^mAHA' <12) 

and here the estimate R will be an M by M matrix. The values used for ac- 
tual processing of the PCA feature vectors were M = 32,64 and N = 64,128. 
The estimate of the principal components for the 512-sample block were 
generated from 

«i=i 

with I = 512/N and the terms within the summation derived from equation 
(2). 

2.3       Backpropagation Neural Network 

The backpropagation neural network (BPNN) was trained by repeated 
presentation of examples of a particular input/output class with a subse- 
quent adjustment to the synaptic weights based on the difference between 
the desired and the actual output. This process is repeated until the user 
set exit criterion is met for termination of the training procedure. Three dif- 
ferent statistics can be used as exit criteria to terminate the training of the 
BPNN. The first is the number of epochs, which is a constant number of 
iterations assigned for training before training begins. The second is based 
on the mean square error (MSE), which is a general measure of the perfor- 
mance of a given neural network model for a given data set. The third exit 



criterion in the BPNN is based on the R-squared statistic, which is the pro- 
portion variability in the target data set based on the input variables. 

We used the epoch training as our exit criterion with a value of 1000 itera- 
tions. The learning rate parameter was set to 0.0005 and was automatically 
adjusted downward by an annealing divisor of 1.1. This adaptation of the 
learning rate allows fine-grain adjustments during the training. The maxi- 
mum initial weights of the network were set to 0.01, and a random number 
generator was used to initialize these weights so that the network will 
avoid starting near a local minimum or an undesirable initial weight posi- 
tion. Further refinements to the learning rate were accomplished through 
an interlayer multiplier, which only affected the learning rate of the hidden 
neuron. The interlayer multiplier will cause the hidden nodes to be more 
sensitive to learning and thus improve the speed of learning. 

Finally, smoothing was incorporated in the rate of learning for the BPNN. 
Smoothing can be highly beneficial to the learning behavior of the neural 
network [9]; it allows control of the weight adjustment based on the past 
values of gradient descent and can prevent the training process from ter- 
minating in a shallow local minimum. The greater the smoothing factor, 
the greater the influence of past adjustments and the smoother the migra- 
tion of weights. A smoothing constant value of 0.9 was used in our neural 
network, which means that 90 percent of the weight adjustment is gov- 
erned by the average of the past directions of gradient descent, and 10- 
percent by the current direction of gradient descent. This is the default 
smoothing constant in the Database Mining Workstation [13], a commer- 
cially available software package for unearthing and evaluating data char- 
acteristics using BPNNs. The data sets were divided into training and test- 
ing blocks for this purpose. Training sample sets were composed of 75, 67, 
and 50 percent of the data set. 

The BPNN classifier was used to calculate the percentage of correct identi- 
fication of ground vehicles, and in some cases the confidence levels were 
also generated. A confusion matrix was calculated that provides the per- 
centage of correct identification (C/D) for each class of ground vehicles 
based on 

Np 

QD = -F- (14) 

Here Np is the total number of correct predicted values and is the total 
number of observations. Confidence levels for the classification of each tar- 
get were calculated by 

K (   1    Prm-Pi      ^ 
Cl ~ K M    .^, Kit 

i  1CID~1FID 

= 1     2(L-1) 
(15) 

where L is the total number of output classes, P^ro- is tne predicted value 
of correct identification for class i, and P^ID-IS tne predicted value of false 
identification for class ; with respect to class i. 



Thus PCiD. is the output for the neural network output node dedicated to a 
particular class, and PFID. is the output for the other output nodes. 

3. Results 

3.1 Confusion Matrices 

Table 2 shows the confusion matrices for testing the PSE, HLA, and PCA 
features on the trained BPNN for each feature space. The numbers repre- 
sent percentage of correct identification. The BPNN used had one input 
layer of 11 or 200 input nodes, one hidden layer of 15 nodes, and one out- 
put layer of 4 nodes. Table 1 (sect. 2) shows the general class characteristics 
of classes 0,1, 2, and 3. 

The scores in table 2 are representative of several trials for each BPNN and 
type of feature vector investigated; the values are rounded to the nearest 
integer. The rows do not sum to 100 percent because of roundoff error. 

Table 2. Testing results for trained BPNN. 

Feature 
space 

Confusion matrices according to percentage trained/tested 

PSE 

PCA 

75/25 

Actual Net output 

0 1 2 3 
0 93 0 3 3 
1 0 96 2 1 
2 3 0 96 0 
3 14 2 0 82 

Confidence level = 81% 

HLA      Actual Net output 

0 
0 

20 

10 9 
93        6 0 

2      97 0 
0       12 67 

Confidence level = 75% 

Actual            Net output 

0           1         2 3 

67/33 50/50 

Actual Net output Actual Net output 

0 0 
0 90          0        4 4 
1 0         98        0 1 
2 4          0      95 0 
3 15          3        2 79 
Confidence level = 80% 

0 93 0        0 
1 0        93        2 
2 8 0      89 
3 13 4        0 
Confidence level = 78% 

Actual Net output Actual Net output 

0 0 
0 89           10 8 
1 0         94        6 0 
2 0          2      97 0 
3 20           1       11 66 
Confidence level = 74% 

0 92 
1 0 
2 0 
3 27 

1 1 
89 10 

3 96 
3 10 

Actual Net output 

1 

4 
2 
2 

82 

4 
0 
0 

58 
Confidence level = 71% 

Actual             Net output 

0          12 3 

0         98 0 0 0 0 95 0 2 2 0 92 1 3 3 

1           0 99 0 0 1 0 99 1 0 1 0 99 0 0 

2          6 0 90 2 2 6 1 84 7 2 7 0 86 6 

3          4 0 0 94 3 5 0 0 94 3 5 0 1 93 

Confidence level = 88% Confidence level = 83% Confidence level = 81% 



3.2      Results using CNAPS 

Further testing was performed with a commercial ANN software package 
known as "BrainMaker," developed by California Scientific Software [20], 
which was run on a general-purpose digital machine called CNAPS (Con- 
nected Network of Adaptive Processors) [21-23]. CNAPS, manufactured 
by Adaptive Solutions, is based on VLSI technology and is capable of high 
neural network performance. CNAPS is an SIMD (single instruction 
stream, multiple data stream) machine consisting of an array of 128 digital 
signal processors operating in parallel, significantly accelerating both the 
training and testing of ANNs. An 8-chip CNAPS system running at a mere 
25 MHz, for example, can perform 12.8 billion multiply accumulates per 
second [9]. The best efficiencies are obtained with very large nets where up 
to 128 nodes in the same layer may be processed simultaneously, but 
smaller nets can gain some benefit as well. 

The BrainMaker package running on the CNAPS hardware can train and 
run ANNs with exactly one input layer, one hidden layer, and one output 
layer using the standard backpropagation training algorithm. The user can 
set a training tolerance so that only those training examples with a root 
mean square (RMS) error above the tolerance will cause the weights to be 
updated. During testing, a user-supplied tolerance is used to determine 
the correctness of the net's answers. Test examples are scored as correct if 
the RMS error is below the tolerance, and they are scored as incorrect if the 
RMS error exceeds the tolerance. This is a somewhat conservative crite- 
rion, in that an example might have the highest activation in the correct 
output node, but still count as a misclassification if the RMS error were 
high. 

For testing, a trial and error approach was used to find a good net configu- 
ration for the PCA data and for the HLA data. Training times were fixed at 
2000 epochs for these tests. We determined the performance for each data 
set by averaging the results of 25 tests. 

We used a random process to select 10 percent of the data set for testing 
and 90 percent for training. Five different training/testing set divisions 
were made, and five different training/testing cycles were performed for 
each division, for a total of 25 different tests. The percentage of correct clas- 
sifications on the test set for each test was averaged to provide a single 
score. The average correct classification on the test sets was 90.8 percent for 
the HLA features and 96.8 percent for the PCA features. Training times 
were considerably less for the CNAPS card over software implementation: 
for example, for a neural network of 11 inputs, 11 hidden layers, and 4 out- 
put nodes, using epoch training of 4000 iterations and 516 feature vectors, 
the software trained in 13 minutes, whereas the CNAPS would perform 
the same training in 90 s. 



4. Conclusions 
The PCA features show a marked improvement over the HLA feature set 
for correct classification and confidence levels for all classes and a slight 
improvement over the PSE feature space. The most notable improvement 
was in the identification of class 3, where PCA feature extraction gave a far 
more robust and stable feature vector for this target class. Both of the other 
feature sets have difficulty discriminating this target class. The largest de- 
gree of misclassification for all feature vectors occurs between class 0 and 
3, where as much as 27-percent misclassification occurs with the HLA fea- 
tures (see table 3). This result was also observed when hierarchical /c-means 
clustering analysis was used to derive data clusters for the four classes (un- 
published findings); again a great deal of crossover occurs for these two 
classes, with a lesser degree between class 2 and class 3. It is also interest- 
ing that even though PCA performs so well on the average, its perfor- 
mance in the classification of class 2 (a 12-cylinder diesel engine truck) is 
unexpectedly poor: this vehicle is very loud, with a characteristic signa- 
ture, and has been classified to 100 percent using maximum likelihood 
methods in the past [3]. We would expect to see similar results with the 
PCA features, but this is not the case; perhaps the distinction is degraded 
by the fact that classes 0, 2, and 3 are closely related, and in this instance, 
the data were collected from the same environment. Further testing of 
trained neural networks with appropriate class data collected from other 
test sites should allow us to resolve this issue. We should be careful in con- 
sidering the results for class 1 since it had a small representation in the 
training and testing: only one data file (albeit quite large) was used for this 
vehicle class. Class 1 data were also the only representative data collected 
at Aberdeen Proving Ground. 

It is not surprising that the PSE feature space produced such a high degree 
of correct classification. The PSE results indicate that the narrowband fea- 
tures for each class are indeed highly class specific; a feature method that 
maintains some of the "brute force" frequency and amplitude resolution 
characteristic of PSE with lower dimensionality may be ideal. Despite the 
PSE's simplicity and performance, we expect that the classification results 
will drop for targets evaluated under different background environments, 
since the algorithm inherently has a high degree of sensitivity to environ- 
mental variables. Apparently, HLA features are lacking in some necessary 
narrowband components for a higher degree of correct classification. 

The choice of using a simple backpropagation neural network classifier is 
supported not only by the results but also by theory: the backpropagation 
algorithm is not only simple in implementation but will closely approxi- 
mate the Bay es error with increased training [9]. Preliminary results with 
the CNAPS card also support the notion that it will provide advantages to 
a fielded neural network classifier. When retraining is necessary, the 
CNAPS implementation will significantly enhance overall system robust- 
ness by its processing speed alone. 

10 



5. Future Considerations 
For future work, the three feature spaces have to be evaluated for their 
complexity and real-time implementation. The downside to the PCA is 
that it is difficult to implement without resorting to the incorporation of a 
preprocessing feedforward neural network [6,9-12,16] or to periodic 
eigenanalysis of the acoustic data. The preprocessing neural network 
could be initialized in the field with scenario-based "eigenclusters" deter- 
mined by the use of clustering techniques and derived for a set of classes 
that one would expect to encounter. These eigenclusters, which would be 
class specific (i.e., tracked versus wheeled), would be a one-dimensional 
application of Sirovich and Kirby's "eigenpicture" method for classifica- 
tion [24]. Any subsequent retraining would be performed only when 
misclassification grows beyond some threshold. The instantaneous esti- 
mate of the correlation matrices by the simple matrix technique in this re- 
port is simply too time consuming when large data blocks are concerned, 
and thus direct procedures to calculate the principal components for each 
time block probably cannot be employed. Alternatively, we could average 
the autocorrelation matrix estimates over the entire 512-sample block, cal- 
culate the eigenvectors, and then transform each subblock to generate 
principal component estimates. Although this approach gives a consider- 
able savings computationally and is less sensitive to signal to noise issues, 
it requires that we assume stationary signals over the sample block of in- 
terest. For nonstationary signals, the errors associated with this procedure 
may make the formation of principal components irrelevant. This tech- 
nique will be investigated further because it may prove promising in 
"PCA-like" feature extraction. 

Although the simple PSE feature space is readily derived and can be used 
rapidly for identification, preliminary results have shown that it is sensi- 
tive to the environment, and misclassification can grow substantially. Also, 
it is very time-consuming in the training stage; without the implementa- 
tion of VLSI, it is cumbersome for real-time applications. We will look into 
employing CNAPS using this simple feature vector in the future. 

The HLA feature vector also has limitations in real-time implementation. 
Several steps are required to perform the harmonic matching, which must 
be tailored to meet real-time criteria. The classification results for the HLA 
feature space are acceptable; this feature space has the added advantage 
that it can generate several feature vectors for the same input sequence. It 
can therefore readily adapt to a multitarget case, where one would like to 
derive feature vectors for each target present and thus perform multitarget 
classification. A generalized HLA algorithm should be investigated for 
performing the multitarget feature extraction. We will use adaptive 
beamforming to take care of the multitarget issue, but HLA may produce 
multiple feature vectors, even when an adaptive beamforming technique 
fail), because the targets are too near each other. Adaptive beamforming is 
limited in detecting two closely spaced targets, whereas HLA would not 
have this limit, since it will operate on the received power spectrum and 
select multiple feature vector examples. 

11 



Further analysis will also be performed on the optimum number of fea- 
tures per feature vector for PCA and HLA feature extraction techniques. In 
the work reported here, the selection for feature vector dimensionality was 
"ad hoc" at best (primarily driven by the existing HLA algorithm feature 
space); both classification results and class separability analysis may show 
that the dimensionality can be reduced further. Preliminary results with 
the HLA features suggest this to be true for classification of the four-target 
case. The number of classes included in the analysis should also be ex- 
tended. More importantly, the four-class problem should be further inves- 
tigated with data sets recorded in several different environments. Toler- 
ance with respect to the environment is of paramount importance in the 
evaluation of a feature extraction algorithm for correct classification. We 
have found that the PSE method is sensitive to environmental conditions 
in preliminary studies. 

Finally, we will investigate features based on wavelet filters, which have 
been successfully applied in speech recognition and waveform classifica- 
tion [25,26]. 

12 
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